

Supplemental Notes

This content is protected and copyright reserved. It may not be shared, copied, distributed, uploaded, or otherwise used without the prior express written authorization of Dr. Brandon Franzke.

Logical operations

Q: what is truth?

A: A function, $t: \{\text{statements}\} \rightarrow \{0, 1\}$.

e.g. P and Q are statements with truth value $\begin{cases} T & \text{if } P \text{ is true} \\ F & \text{if } P \text{ is false} \end{cases}$

$$t(P \wedge Q) = \min(t(P), t(Q))$$

$$t(P \vee Q) = \max(t(P), t(Q))$$

P	Q	$P \wedge Q$
1	1	1
0	1	0
1	0	0
0	0	0

P	Q	$P \vee Q$
1	1	1
0	1	1
1	0	1
0	0	0

$$t(\sim P) = 1 - t(P)$$

$$t(P \rightarrow Q) = \min(1, 1 - \frac{t(P)}{t(Q)})$$

P	$\sim P$
1	0
0	1

P	Q	$P \rightarrow Q$
1	1	1
0	1	1
1	0	0
0	0	1

$$t(P \oplus Q) = |t(P) - t(Q)|$$

$$t(P \leftarrow Q) = 1 - |t(P) - t(Q)|$$

P	Q	$P \oplus Q$
1	1	0
0	1	1
1	0	1
0	0	0

P	Q	$P \leftarrow Q$
1	1	1
0	1	0
1	0	0
0	0	1

Intuition / Implication.

Q: why $[\text{false} \rightarrow \text{true}]$ is true.

A: by definition. But consider

If given number x less than 10 then x less than 100
[i.e. $x < 10 \rightarrow x < 100$]

trivially true.
(i.e. true for all inputs)

Case 1: $x = 5$, $5 < 10 \rightarrow 5 < 100$ true \rightarrow true
true

Case 4: $x = 200$, $200 < 10 \rightarrow 200 < 100$ false \rightarrow false
true

Case 2: $x = 50$, $50 < 10 \rightarrow 50 < 100$ false \rightarrow true
true

Case 3: no such x , $x < 10$ and $x \neq 100$.

\therefore true for all inputs.

Theorem (1) $P \wedge Q \Rightarrow P$

(2) $P \Rightarrow P \vee Q$

Prf: by (binary) truth table.

P	Q	$P \wedge Q$	$Q \Rightarrow P$	$P \Rightarrow P \vee Q$
1	1	1	1	1
0	1	0	1	0
1	0	0	0	1
0	0	0	1	0

QED.

tautology
"equivalent to truth"

∴ valid since statement is equivalent to "1" for all inputs

$\exists \longleftrightarrow$ "Some"
 $\forall \longleftrightarrow$ "All"

$$\bigcap_{\alpha} A_{\alpha} \stackrel{\text{D.M.}}{=} \left(\bigcup_{\alpha} A_{\alpha} \right)^c$$

$$x \in \bigcap_{\alpha} A_{\alpha} \rightarrow \forall \alpha: x \in A_{\alpha}$$

$$\bigcup_{\alpha} A_{\alpha} \stackrel{\text{D.M.}}{=} \left(\bigcap_{\alpha} A_{\alpha} \right)^c$$

$$x \in \bigcup_{\alpha} A_{\alpha} \rightarrow \exists \alpha: x \in A_{\alpha}$$

Arbitrary A_{α} , AND \wedge, \cap, \forall .

OR \vee, \cup, \exists

Lemma: little theorem used to prove big theorem

Corollary: special case of theorem

Ex: $[(P \vee Q) \rightarrow R] \leftrightarrow [P \rightarrow (Q \rightarrow R)]$.

P	Q	R	$[(P \vee Q) \rightarrow R] \leftrightarrow [P \rightarrow (Q \rightarrow R)]$							
1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	0	1	1
1	0	1	1	1	0	1	1	1	1	0
0	0	1	0	0	0	1	1	0	1	1
1	1	0	1	1	1	0	0	1	0	0
0	1	0	0	1	1	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	1	0
			1	1	1	1	1	1	1	1
			2	3	3	4	3	3	z	z

\therefore False (since the "final" column is not all 1's)

Models

Defn: Models are abstractions of reality with simplified behavior and cause-effect

Note: A model is only as good as the modeller and the assumptions that underlie the model.

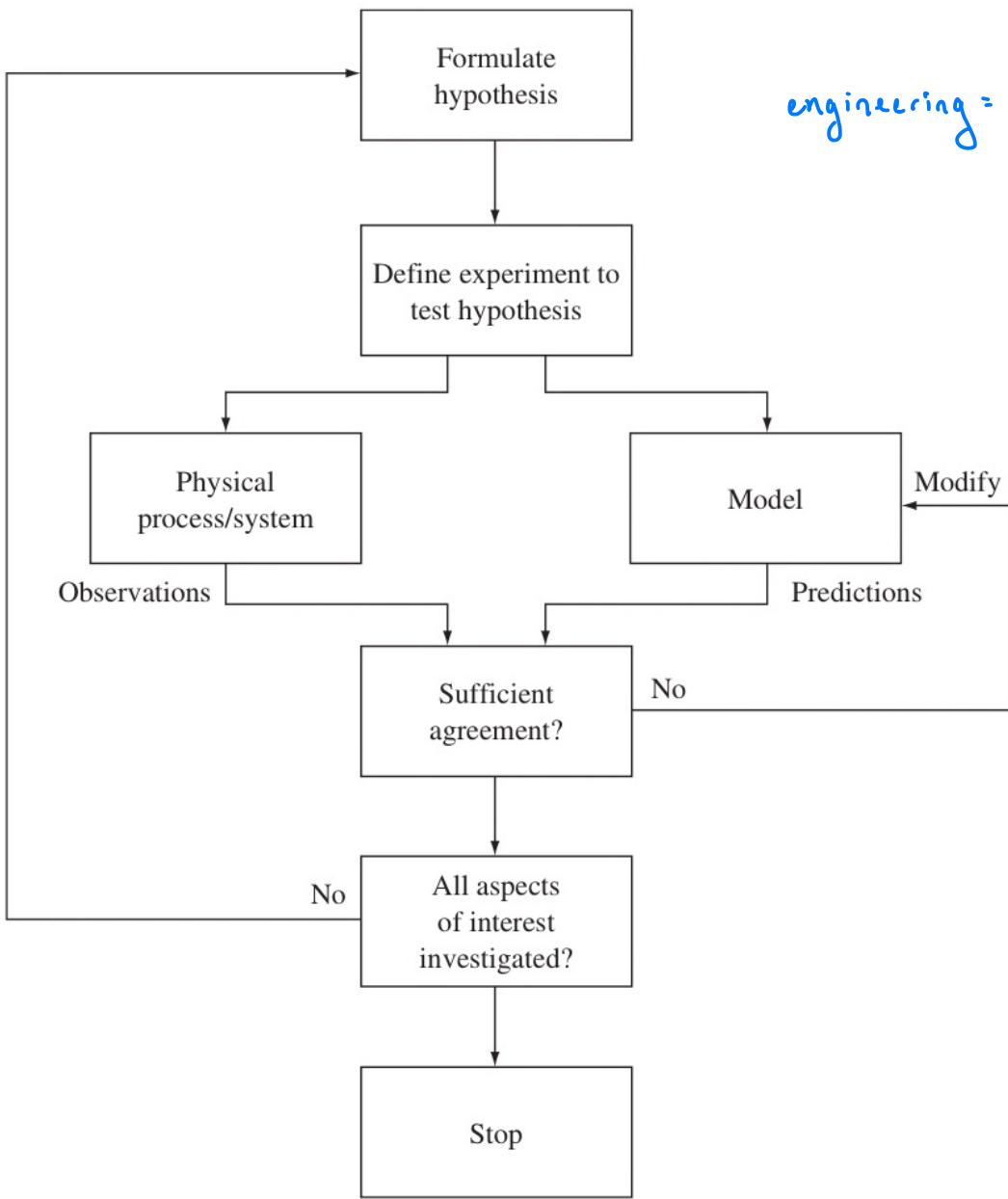
A useful model explains all relevant aspects

→ ; i.e. what you care about

Ex: Assuming "bell shaped" model for class grades.
(i.e., "the curve")

Goal: explain observed behavior.

Ideal: simple and understandable rules.



engineering = science + money

Each step requires modeller input and expert opinion.

Iterative process continues until model is sufficient
(or run out of time/money)

↪ "good enough"

Types of models

- Deterministic. Same input produce same output

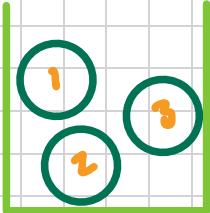
Ex: $V = iR$.

- Random Same input may produce different output.

Defn: A random experiment is an observation that varies in an "unpredictable" way when repeated under the same conditions

"Naïve" probability theory.

Ex: 3-balls in urn experiment



1. Shake and randomly select ("random sample")
2. Record #. Return ball ("with replacement")

\therefore Sample space $\Omega = \{1, 2, 3\}$.

Repeat experiment

Outcome varies unpredictably. Cannot infer single outcome given history

Statistical regularity

Regularity is a means to quantify predictability in the long run.

Ex: Weak law of large numbers (WLLN)

each called a "trial"

Average of outcomes from a long sequence of experiments

yield approximately the same value

Ex: Central limit theorem (CLT)

Standardized average from a long sequence of experiments

follow approximately the same "distribution"

Ex: 3-balls in urn.

Define $N_1(n)$, $N_2(n)$, $N_3(n)$ as number of times you observe 1, 2, 3 after n -flips.

$N_1(n)$, $N_2(n)$, $N_3(n)$

are random.

Define the relative frequency

$$f_k(n) = \frac{N_k(n)}{n} \text{ for } k=1,2,3$$

After you run the experiment and compute $N_1(n)$, $N_2(n)$, $N_3(n)$ they are not random. "Realization" of random variable

Statistical regularity means $f_k(n)$ varies less as n "gets large"

specifically: $\lim_{n \rightarrow \infty} f_k(n) = p_k$

constant. called the probability of outcome k .

Problems with this "frequentist" approach:

① Problems with the limit (in a mathematical sense)

must $\lim f_n(n)$ always converge? No.

② Impossible to repeat experiment infinite times

only finite samples. How to compute p_k ?

③ How to operate for experiments you cannot repeat?

e.g., election outcome

④ How to handle experiments with a continuous sample space.
(continuum of outcomes)

e.g., pick random number in interval $[0, 1]$.

∴ Need a more robust approach but maintains consistency with
frequentist approach / intuitive understand of probability.

Axiomatic Probability Theory.

Idea: in random experiments define outcomes and occurrence of events as sets

General idea: Probability is about measuring relative size of sets.

Basic structure:

Suppose an experiment yields a random outcome

- (1) The set of all possible results Ω is the "sample space"
- (2) Elements of the sample space are "outcomes"
- (3) Events are a special class of subsets of the sample space
called "measurable sets"
- (4) The probability of an event is the "size" of the set
relative to the whole sample space (Ω)

Axiomatic probability theory uses the language of sets.

Language of sets

$$A \cap B = \{ x \in X : x \in A \ \& \ x \in B \}$$

- set intersection

$$A \cup B = \{ x \in X : x \in A \ \vee \ x \in B \}$$

- set union

$$A^c : \{ x \in X : x \notin A \}$$

- set complement

$$A \subset B \iff \forall x : x \in A \implies x \in B.$$

- set subset

$$A - B = A \cap B^c$$

- set difference

↑
result is a proposition
↓ (not set)

$$A = B \iff A \subset B \ \& \ B \subset A.$$

- set equality

$$A \Delta B = (A \cap B^c) \cup (B \cap A^c)$$

- symmetric set difference

De Morgans

$$A \cap B = (A^c \cup B^c)^c$$

$$A \cup B = (A^c \cap B^c)^c$$

$$\bigcap_{\alpha} A_{\alpha} = (\bigcup_{\alpha} A_{\alpha}^c)^c$$

$$\bigcup_{\alpha} A_{\alpha} = (\bigcap_{\alpha} A_{\alpha}^c)^c$$

compare: $\min(x, y) = -\max(-x, -y)$
 $\max(x, y) = -\min(-x, -y)$

Logical diversion - "how to proof"

* if-then "if p then q ", " q if p ", " $p \rightarrow q$ "

1. Suppose "if" part is true

2. Show "then" part is true ("prove") or
false (disprove)

* if and only if "p if and only if q ", " p iff q ", " $p \leftrightarrow q$ "

1. Prove $p \rightarrow q$] must do both
2. Prove $q \rightarrow p$

* subset " $X \subset Y$ "

1. Choose arbitrary element $x \in X$.

2. Show $x \in Y$.

* equality " $X = Y$ "

1. Show $X \subset Y$] must do both
2. Show $Y \subset X$

Note: Venn diagrams are NOT proofs. \Rightarrow helpful tools
use as guidance.

Ex: $A \cap B \subset A \subset A \cup B$.

Prf: Claim 1: $A \cap B \subset A$

$x \in A \cap B$ assump.

$\therefore x \in A$ AND $x \in B$ defn \cap

$\therefore x \in A$ Lemma (\cap above)

$\therefore A \cap B \subset A$ Defn \subset QED.

Claim 2: $A \subset A \cup B$.

$x \in A$ assump.

$\therefore x \in A$ OR $x \in B$ Lemma (\cup above)

$\therefore x \in A \cup B$ Defn \cup

$\therefore A \subset A \cup B$ Defn \subset

Q: What is probability

A: It is a function. $P: \Omega \rightarrow [0, 1]$.

② CAT

- definition of a probability measure

(all possible outcomes)
sample space all possible events.

Defn: Suppose (X, Ω) is a measurable space.

Then $P: \Omega \rightarrow [0, 1]$ is a probability measure iff P is CAT.

CA: Countable Additive

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k) \quad \text{if } A_i \cap A_j = \emptyset \text{ when } i \neq j$$

(A_i and A_j are "mutually exclusive")

T: Total set X gets unit mass :

$$P(X) = 1$$

Defn: (X, Ω, P) is a probability space iff

(X, Ω) is a measurable space

and $P: \Omega \rightarrow [0, 1]$ is CAT.

Ex: Prove or disprove $[A \cup B = B] \rightarrow [A \subset B]$.

Prf: method of proof for " \rightarrow "

1. Assume LHS

2. Determine RHS true/false.

Suppose $A \cup B = B$.

[\therefore show $A \subset B$].

1. pick $x \in A$

Assump.

P	Q	$P \rightarrow Q$
1	1	1
0	1	1
1	0	0
0	0	1

only row to worry about!

2. $\therefore x \in A \text{ OR } x \in B$ Defn \vee

3. $\therefore x \in A \cup B$ Defn \cup \leftarrow like LHS, that's the key

4. $\therefore x \in B$ Since $A \cup B = B$ (by assump.)

5. $\therefore A \subset B$ Defn \subset

Ex: $P[\emptyset] = 0$. \rightarrow CAT, \therefore only know $P[X] = 1$.

Prf: $X = X \cup \emptyset$.

X and \emptyset mutually exclusive since $X \cap \emptyset = \emptyset$ and $X \cup \emptyset = X$.

$$\therefore P[X] = P[X \cup \emptyset] \stackrel{\text{C.A.}}{=} P[X] + P[\emptyset]$$

$$\therefore 1 = 1 + P[\emptyset]$$

$$\therefore P[\emptyset] = 0.$$

Ex: Monotony $A \subset B \rightarrow P(A) \leq P(B)$

Pf: Suppose $A \subset B$

$$B = B \cap X = B \cap (A \cup A^c)$$

$$= (B \cap A) \cup (B \cap A^c)$$

(proof reqd)
Distributivity

$$= A \cup (B \cap A^c)$$

$A \subset B$ (by hypo)

$$\therefore P(B) = P(A) + P(B \cap A^c)$$

$(A) \cap (B \cap A^c) = \emptyset$
 \therefore mut. exclusive + CA

$$\therefore \geq P(A)$$

Ex: Addition Theorem $P(A) + P(B) = P(A \cup B) - P(A \cap B)$

$$A = A \cap X = A \cap (B \cup B^c)$$

$$B = B \cap X = B \cap (A \cup A^c)$$

$$\therefore P(A) + P(B) = P(A \cap (B \cup B^c)) + P(B \cap (A \cup A^c))$$

$(A \cap B) \cup (A \cap B^c)$ disjoint $(B \cap A) \cup (B \cap A^c)$ disjoint

$$\begin{aligned} &= P(A \cap B) + P(A \cap B^c) + P(B \cap A) + P(B \cap A^c) \\ &= P(A \cap B) + P(A \cup B) \quad \text{= } P(A \cup B) \quad \text{next page} \\ &= P(A \cap B) + P(A \cup B) \end{aligned}$$

Ex: **Addition Theorem** (detailed proof)

$$P(A) + P(B) = P(A \cup B) + P(A \cap B)$$

Claim: $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$

$$= (A \cap B^c) \cup (A \cap B) \cup (B \cap A^c)$$

$$P[A] - P[A \cap B] \quad P[B] - P[A \cap B]$$

Lemma: $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$

Claim 1: $A \cup B \subset (A - B) \cup (A \cap B) \cup (B - A)$

1. pick $x \in A \cup B$ Ass.

2. $\because x \in A$ OR $x \in B$ defn \cup .

Case 1: $x \in A$ AND $x \notin B$.

$$\therefore x \in A \text{ AND } x \in B^c \text{ defn } c$$

$$\therefore x \in A \cap B^c \text{ defn } \cap$$

$$\therefore x \in A - B \text{ defn } -$$

Case 2: $x \notin A$ AND $x \in B$

$$\therefore x \in A^c \text{ AND } x \in B. \text{ defn } c$$

$$\therefore x \in B \cap A^c \text{ defn } \cap$$

$$\therefore x \in B - A \text{ defn } -$$

Case 3: $x \in A$ AND $x \in B$.

$$\therefore x \in A \cap B. \text{ defn } \cap.$$

But how to justify using cases? propositional logic, next page.

$$3. \therefore x \in (A - B) \cup (A \cap B) \cup (B - A) \quad \underline{\text{Lemma}}$$

$$4. \therefore A \cup B \subset (A - B) \cup (A \cap B) \cup (B - A) \quad \text{defn } \cup$$

QED, claim 1.

Lemma: $P \vee Q \longleftrightarrow (P \& \sim Q) \vee (P \& Q) \vee (\sim P \& Q)$

P	Q	$P \vee Q$	$(P \& \sim Q) \vee (P \& Q) \vee (\sim P \& Q)$
1	1	1 1 1 1	1 0 0 1 1 1 1 0 0 1
0	1	0 1 1 1	0 0 0 0 0 1 1 1 1 1
1	0	1 1 0 1	1 1 1 1 0 0 1 0 0 0
0	0	0 0 0 1	0 0 1 0 0 0 0 1 0 0

\therefore valid

\therefore QED. (Lemma)

Claim 2: $(A - B) \cup (A \cap B) \cup (B - A) \subset A \cup B$

1. pick $x \in (A - B) \cup (A \cap B) \cup (B - A)$. Ass.

2. $\therefore x \in (A - B)$ OR $x \in A \cap B$ OR $x \in B - A$ defn \cup

Case 1: $x \in A - B$.

1. $\therefore x \in A \cap B^c$ defn -

2. $\therefore x \in A$ AND $x \in B^c$ defn \cap

3. $\therefore x \in A$ Lemma: $P \& Q \rightarrow P$.

4. $\therefore x \in A$ OR $x \in B$ Lemma: $P \rightarrow P \vee Q$.

5. $\therefore x \in A \cup B$ defn \cup

Case 2: $x \in A \cap B$ ✓

Case 3: $x \in B - A$ ✓

3. $\therefore x \in A \cup B$.

4. $\therefore (A - B) \cup (A \cap B) \cup (B - A) \subset A \cup B$. defn ⊂

QED, Claim 2.

$\therefore A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$ defn =, Claim 1 + 2.

QED, Lemma.

$$\begin{aligned}\therefore P(A) + P(B) &= P(A - B) + P(A \cap B) \\ &\quad + P(B - A) + P(A \cap B) \\ &= P((A - B) + P(A \cap B) + P(B - A)) + P(A \cap B) \\ &\quad \text{disjoint, CA.} \\ &= P(A \cup B) + P(A \cap B) \\ &\quad \text{Lemma.}\end{aligned}$$

QED

quod erat demonstrandum
(which was to be demonstrated)